The Entropy of Backwards Analysis

نویسندگان

  • Mathias Bæk Tejs Knudsen
  • Mikkel Thorup
چکیده

Backwards analysis, first popularized by Seidel, is often the simplest most elegant way of analyzing a randomized algorithm. It applies to incremental algorithms where elements are added incrementally, following some random permutation, e.g., incremental Delauney triangulation of a pointset, where points are added one by one, and where we always maintain the Delauney triangulation of the points added thus far. For backwards analysis, we think of the permutation as generated backwards, implying that the ith point in the permutation is picked uniformly at random from the i points not picked yet in the backwards direction. Backwards analysis has also been applied elegantly by Chan to the randomized linear time minimum spanning tree algorithm of Karger, Klein, and Tarjan. The question considered in this paper is how much randomness we need in order to trust the expected bounds obtained using backwards analysis, exactly and approximately. For the exact case, it turns out that a random permutation works if and only if it is minwise, that is, for any given subset, each element has the same chance of being first. Minwise permutations are known to have Θpnq entropy, and this is then also what we need for exact backwards analysis. However, when it comes to approximation, the two concepts diverge dramatically. To get backwards analysis to hold within a factor α, the random permutation needs entropy Ωpn{αq. This contrasts with minwise permutations, where it is known that a 1 ` ε approximation only needs Θplogpn{εqq entropy. Our negative result for backwards analysis essentially shows that it is as abstract as any analysis based on full randomness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Acceptance Sampling Design Using Bayesian Modeling and Backwards Induction

In acceptance sampling plans, the decisions on either accepting or rejecting a specific batch is still a challenging problem. In order to provide a desired level of protection for customers as well as manufacturers, in this paper, a new acceptance sampling design is proposed to accept or reject a batch based on Bayesian modeling to update the distribution function of the percentage of nonconfor...

متن کامل

Transient Entropy Generation Analysis During Wustite Pellet Reduction to Sponge Iron

The present study carefully examined entropy generation during wustite pellet reduction to sponge iron. The finite volume method was used to solve the governing equations. The grain model was used to simulate the reaction rate. The reactant gases including carbon monoxide and hydrogen were converted to water and carbon dioxide after wustite reduction. Entropy is generated by heat transfer, mass...

متن کامل

Assessing the Effects of Alzheimer’s disease on EEG Signals Using the Entropy Measure: a Meta-Analysis

Introduction and Aims: Alzheimer’s disease is the most prevalent neurodegenerative disorder and a type of dementia. 80% of dementia in older adults is because of Alzheimer’s disease. According to multiple research articles, Alzheimer's has several changes in EEG signals such as slowing of rhythms, reduction in complexity and reduction in functional associations, and disordered functional commun...

متن کامل

Backwards Design or looking Sideways? Knowledge Translation in the Real World; Comment on “A Call for a Backward Design to Knowledge Translation”

El-Jardali and Fadllallah provide an excellent summary of the many dimensions of knowledge use, and the breath of issues and activities that must be considered if knowledge is to be put into practice. However, reliance on a continuum (rather than a cyclical, multidirectional, systems) model creates a number of limitations, particularly when promoting evidence-informed action in the areas of hea...

متن کامل

Entropy generation analysis of non-newtonian fluid in rotational flow

The entropy generation analysis of non-Newtonian fluid in rotational flow between two concentric cylinders is examined when the outer cylinder is fixed and the inner cylinder is revolved with a constant angular speed. The viscosity of non-Newtonian fluid is considered at the same time interdependent on temperature and shear rate. The Nahme law and Carreau equation are used to modeling dependenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018